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Rhodium-Catalyzed [2+2+1+1] Cyclocarbonylative Coupling of Alkynes
with Carbon Monoxide Affording Tetrasubstituted p-Benzoquinones

Qiufeng Huang and Ruimao Hua*!"!

Abstract: In this strategy, the tetrasubstituted benzoquinones have been prepared

directly by a [24+2+41+1] cyclocarbonylative coupling reaction of internal alkynes
with CO in the presence of [RhCI(CO),],. The low concentration of CO in the re-
action is the crucial point for the chemoselective formation of tetrasubstituted ben-
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zoquinones in good to high yields. Functional groups such as chloro, methoxy,
cyano, vinyl, fluoro, and carboxylate are tolerated under the reaction conditions.

Introduction

Transition-metal-catalyzed carbonylation is one of the most
important and useful reactions for the synthesis of carbonyl
compounds in organic synthesis.!! The intermolecular cyclo-
carbonylation from an alkyne,
alkene, and CO as well as intra-
molecular  cyclocarbonylation
from an enyne or diyne and CO
have been proven to be ex-
tremely valuable protocols for
the synthesis of the unsaturated {

(o

O

cyclic ketones, which are widely
applied as intermediates for or-
ganic synthesis, fine chemicals,
and pharmaceutical synthesis.
There has been extraordinary
progress in these atom-econom-
ical cyclization reactions during
the last two decades, and it has
been disclosed that various
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structures of unsaturated cyclic ketones can be selectively
obtained depending on the use of different substrates, cata-
lysts, and reaction conditions. For example, as shown in
Scheme 1, furan-2(5H)ones could be selectively formed
from the reductive cyclocarbonylation of alkynes in the

{ =
e c=o0 | — 0
N
xV X 2-cyclopenten-1-one
= + CO

*

Y

\4’6’75 =

|:O:C c=0 ]

|

2-cyclohexene-1,4-dione

o

presence of water catalyzed by a variety of catalyst sys-
tems,” 2-cyclopenten-1-ones could be obtained by the
[242+1] cyclocarbonylative coupling of an alkyne, alkene,
and CO (Pauson-Khand-type reaction),’! and 2-cyclohex-
ene-1,4-diones formed through the [2-+2+1+1] cyclocarbo-
nylative coupling of an alkyne, alkene, and two molecules of
CO; these compounds are intermediates for the synthesis of
functionalized hydroquinones.™

Moreover, the synthesis of bicyclopentenones® and the
formation of bicyclopentadienones® were reported by the
direct intramolecular cyclocarbonylation of an enyne or
diyne with CO (Scheme 2).
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bicyclopentenone or
bicyclopentadienone

Scheme 2.

Development of synthetic

Therefore, the reaction was first carried out under a CO
pressure of 5.0MPa (initial pressure at room temperature)
in the presence of [RhCI(CO),], (2.5 mol%) in toluene at
130°C for 24 h.'¥ The analyses of GC and GCMS of the re-
action mixture disclosed that a small amount of 2a was

Table 1. Catalytic cyclocarbonylation of 4-octyne with carbon monoxide. !

methods for substituted p-ben- 0
zoquinones is an important re- o catalyst
. : } —— \ +CO0 —

s;agch work in organic synthe solvent
sis[® as such types of com- 4
pounds are not only widely ap- 1a 2a
plied as versatile intermediates — -
L. . . Entry Catalyst [mol%]  Solvent Other conditions!” Yield of 2a [%]'!
in diverse organic synthesis, but
also widelv exist in nature and 1 [RhCI(CO),), (2.5) toluene CO (5.0MPa), 130°C for 24 h <5

. y_ . . 2 RhCI(CO),], (2.5) toluene CO (1.0MPa), 130°C for 24 h 20
exhibit various important bio- 5 RhCI(CO).], (2) CHCLCHCl, CO (1.0MPa), 120°C for 24 h 10
logical activities.! The tradi- 4 RhCI(CO),}, (2)  toluene CO atmosphere, 120°C for 24 h 18
tional synthesis of p-benzoqui- 5 RhCI(CO),], (2) CHCLCHCI, CO atmosphere, 120°C for 24 h 27
nones by oxidizing the substi- © RhCI(CO),, (2.5) CHCLCHCI, CO bubbling, 120°C for 24 h 33
tuted h Is h . itabl 7 CO bubbling, 120°C for 24 h 13
uted  phenols - has inevitable ¢ RhCI(CO),], (2.5) DMSO CO bubbling, 120°C for 24 h <5

drawbacks such as: 1)the use o
of stoichiometric amounts of 10
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[RhCI(CO),}, (2.5) BuOBu
[
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RhCI(CO),], (2.5) CHCLCHCI, Ph,P (10 mol%), CO bubbling, 120°C for 24h 0
RhCI(CO),], (2.5) CHCLCHCI, Bu,N (10 mol%), CO bubbling, 120°C for 24h 0

oxidants which are either ex. 11  [RhCI(CO),], (2.5) CHCLCHCI, CO bubbling, 140°C for 24 h 7
; e ~ 12 [RhCI(CO), (25) CHCLCHCL, COIN, (ca. 1:1) bubbling, 140°C for 15 h 71
pensive or waste-forming pro- 3 |pqC0)] (25) CHCLCHCL COMN, (ca. 11) bubbling, 140°C for 24 h 94 (90)

cesses and 2) the limited availa- |, RhCL:3H,0 (5)

CHCLCHCl, CO/N, (ca. 1:1) bubbling, 140°C for 15 h 22

bility of substituted phenols. On
the basis of retrosynthetic anal-
ysis, p-benzoquinones can be
obtained by the [24+2+1+1]
chemoselective cyclocarbonylative coupling of two mole-
cules of an alkyne and two molecules of CO. Therefore, it is
an interesting and challenging research work to develop the
catalytic system for such cycloaddition reactions.’®*!

Recently, we have been interested in the development of
the transition-metal-catalyzed carbonylation of alkynes. We
have developed the [Ru;(CO),]-catalyzed reductive cyclo-
carbonylation of internal alkynes in the presence of water to
afford 3,4-disubstituted furan-2(5H)ones!"! and the rhodi-
um-catalyzed double hydroaminocarbonylation of terminal
alkynes with CO and amines to afford 1,4-diamides."!! As
an extension of our efforts in this field, in this paper, we
wish to report a [2+2+141] cyclocarbonylative coupling
strategy of internal alkynes with CO to efficiently synthesize
p-benzoquinone  derivatives in  the presence  of
[RhCI(CO),],.

Results and Discussion

The reaction of 4-octyne (1a) with CO under different con-
ditions was examined to screen the optimal reaction condi-
tions for the chemoselective formation of 2,3,5,6-tetrapropyl
benzoquinone (2a) as summarized in Table 1. We consider
that in order to realize the “double” cyclocarbonylation of
1a, a high CO pressure might be favorable for 2a forma-
tion.

8334 — www.chemeurj.org
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[a] Reactions were carried out by using 1.0 mmol of 1a in 1.0 mL of solvent. [b] Bubbling rate: ~1.5-
2.0 mLmin . [c] GC yield (isolated yield) based on the amount of 1a used.

formed and that without the formation of any other car-
bonylated products, 1a was recovered (entry 1). However,
unexpectedly, when the same reaction was repeated under a
mild initial CO pressure (1.0MPa) in toluene at 130°C and
in 1,1,2,2-tetrachloroethane (TCE) at 120°C for 24 h, 2a
was obtained in 20 and 10% GC yields, respectively (en-
tries 2 and 3). These results encouraged us to examine the
same experiment with a lower CO pressure.

As shown Table 1, under a CO atmosphere, the yield of
2a could be substantially increased (entries 4 and 5). Thus
we can ascertain that the low concentration of CO in the re-
action system favors the formation of 2a. As a matter of
fact, when bubbling CO gas (1.5-2.0 mLmin™") through the
reaction solution a higher yield of 2a resulted (33% GC
yield, entry 6). In order to further enhance the formation of
2a, the effects of solvents and additives were also briefly ex-
amined. It was found that the use of the coordinated sol-
vents (for example, BuOBu and DMSO), and ligands (for
example, PPh; and Et;N) led to the decrease or complete
loss of the catalytic activity of [RhCI(CO),], for the forma-
tion of 2a (entries 7-10).

The catalytic activity of [RhCI(CO),], in TCE could be
greatly improved by increasing the reaction temperature.
An increase of the reaction temperature up to 140°C result-
ed in the formation of 2a in 72% GC yield (entry 11) after
24 h. Surprisingly, an identical result was obtained by bub-
bling CO/N, (CO/N,=ca. 1:1, ~1.5-2.0 mLmin™!) at this
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temperature in a shorter time (15 h, entry 12). Therefore, a
prolonged reaction time up to 24 h led to a satisfactory yield
of 2a (94% GC), which was isolated in 90% yield
(entry 13).  Furthermore, under similar conditions,
RhCl;-3H,0 also showed catalytic activity to give 2a in
22% GC yield (entry 14).

A number of tetrasubstituted p-benzoquinones could be
synthesized by the present catalytic procedure by the cyclo-
carbonylative coupling of a variety of internal alkynes with
CO under the reaction conditions as indicated in entry 13 of
Table 1. As summarized in Table 2, the yields of p-benzoqui-

Table 2. Cyclic carbonylation of internal alkyne.*!

FULL PAPER

zoquinones of two regioisomers, and the electronic effect of
the substituent on the aromatic ring is very significant. The
monophenyl (1g—j), monoelectron-rich aryl-substituted (1k-
n) internal alkynes seem to be good substrates for the cyclo-
carbonylative coupling reaction to afford the corresponding
p-benzoquinones in good to high yields (Table 2, entries 6—
14). The cyclocarbonylative coupling reaction of electron-
deficient monoaryl-substituted internal alkynes (1p-s) with
carbon monoxide also occurred, but afforded relatively low
yields of the desirable products (Table 2, entries 15-18). As
evident from Table 2, this catalytic system can tolerate vari-
ous functional groups, such as
methoxy, cyano, vinyl, chloro,
fluoro, and ester.

(0] (0]
[RhCI(CO),]
S N N In the present [242+1+1] cy-
R—=—R' + COIN, S — clocarbonylative coupling reac-
Cl,CHCHCI, R’ R R R tion, when an unsymmetrical in-
1:1, bubbling reflux for 24 h
1 (1.5- 2.0 mL/min) 2 2 ternal alkyne was employed,
the formation of two possible
Entry Starting R R Product Yield [%]®! 2/2' .
material (2+2) regioisomers was observed as
expected. The ratio of two re-
1 1b C,H, C,H; 2b 87 o .
5 1 nCH, n.C.H, 2¢ 9% gioisomers could be determined
. 1
3 1d n-C;H,, CH, 2d 28 48:5261 by either "H NMR spectroscopy
4 le PhCH, n-CsH,, 2e 35 53:47¢1  (Table 2, entries 5-7, 13, and
5 1f p-CICH,CH, n-CsHy, 2f 40 51149[;]] 17) or GC analysis (Table 2, en-
6 1g Ph CH, 2g 89 80204
ries 3-4, 15-16, and 18). In the
7 1h Ph C,H; 2h 85 84:16 o ’ )
3 1i Ph n-C.H, 2i 65 (33+32) cases of 1i-m and 1o used, two
9 1j Ph n-CH,, 2j 59 (27+32) regioisomers could be separated
10 1k p-CH,CH, n-CsHy, 2k 87 (45+42) by preparative TLC isolation.!
g il P'SE%%& ”‘SGEB ;l gg 238"‘12; Interestingly, when 1-benzo-
m p-CH;0CH, n-GsHy, m + 1. :
13 1n p-CH;OCH, NC(CH,), 2n 53 s9:5110  Yl-l-heptyne (lt),was Sub]_e_Cted
\ to the same reaction conditions,
14 1o \_Qg_ n-CsHy, 20 50 (26+24) the corresponding p-benzoqui-
15 1p p-CICH, n-CsHj, 2p 40 59:411<1  none derivative was not formed
R at all. Instead, 2-n-butyl-5-phe-
16 1q F@g— n-CsHy, 2q 45 59:419  nylfuran (4) was isolated in
95% yield (Scheme 3)."
Qé— a As described above, monoar-
7 Ir co0CH n-CsHy, 2r 31 75257 yl.substituted internal alkynes
CH3 undergo the [24+2+41+1] cyclo-
3
o carbonylative coupling reaction
18 1s C|—®§— n-CsH,, 2s 26 61:391 y plng re:
to afford the corresponding p-

[a] Reactions were carried out by using 1.0 mmol of 1 in 1.0 mL of solvent under reflux for 24 h. [b] Isolated
yield. [c] Isomer ratio was determined by GC analysis. [d] Isomer ratio was determined by '"H NMR spectros-

copy.

nones are sensitive to the nature of alkyne substitution. The
reactions of 3-hexyne (1b) and 5-decyne (1c¢) with carbon
monoxide gave the cycloadducts 2b and 2¢ in 87 and 96 %
isolated yields, respectively (Table 2, entries 1 and 2). The
yields are similar to that obtained from 1a. However, when
2-octyne (1d), 1-phenyl-2-octyne (1e), and 1-(4-CIC,H,)-2-
octyne (1f) were employed, the two regioisomers of p-ben-
zoquinones were isolated in relatively low total yields
(Table 2, entries 3-5).

Aryl and alkyl-substituted asymmetrical internal alkynes
also reacted efficiently to produce the corresponding p-ben-
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benzoquinones. Unfortunately,
the coupling reaction of alkynes
possessing two bulky groups,
such as 1,2-diarylated alkynes,
could not take place under the same reaction conditions.
The formation of other carbonylated products was not ob-
served either and diarylacetylene was recovered completely.

[RhCI(CO),], (2.5 mol%)
o) COIN, (1:1, bubbling)

>\%"'05H » )\
Ph 1t TCE, reflux for 24 h Ph™ 0" "n-CH,
4 95% (isolated)
Scheme 3.
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Moreover, the present Rh(I)-catalyzed cyclocarbonylative
addition conditions are not effective for both terminal al-
kynes and propiolate derivatives. In the case of terminal al-
kynes employed, the reaction gave a mixture of (cyclo)trim-
ers. The reaction of propiolate derivatives resulted in the
formation of the cyclotrimer of alkynes as the major prod-
uct, accompanied with the formation of dimers confirmed
by GCMS analysis.

On the basis of the previous reports on the formation of
maleoylmetal complexes from alkynes and two molecules of
CO,™! and p-benzoquinones from the reaction of maleoyl-
metal complexes with alkynes,”®! a proposed mechanism in-
volving the formation of rhodacycle intermediates is depict-
ed in Scheme 4. At first, the reaction of rhodium(I) dimer A

[RhCICO),l, + R——R
A 1

R R R
co
1+CO B
R 2 X O
R
R~ ] |
[Rh]
[Rh] R rR™
- o)
D c

1

Scheme 4. Proposed mechanism for [24+2+1+1] cyclocarbonylative cou-
pling of an internal alkyne and carbon monoxide.

with an alkyne gives the alkyne-coordinating intermediate
B. The oxidative coupling of the coordinated alkyne and CO
to the rhodium generates a five-membered rhodacycle C,
followed by insertion of the alkyne into the rhodium—carbon
bond to form a seven-membered rhodacycle D. The carbon—
carbon bond formation by the reductive elimination fur-
nishes benzoquinone 2 and regenerates intermediate B.

From our present investigation, it is apparent that the cat-
alytic formation of p-benzoquinones is sensitive to the con-
centration of CO in the reaction, and the most important
factor for high chemoselective formation of p-benzoqui-
nones is to perform the cyclocarbonylation reaction under a
low concentration of CO. It is likely that over a certain
value of CO concentration, CO competes with the alkyne
for coordination to the rhodium center to restrain the for-
mation of intermediates B and/or D.
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Conclusion

We have developed an efficient catalyst system to realize
the straightforward synthesis of tetrasubstituted benzoqui-
nones in modest to high yields by [242+1+1] cyclocarbony-
lative coupling of internal alkynes with CO in the presence
of [RhCI(CO),],. The present research work has extended
the utility of the cyclocarbonylative coupling reaction of al-
kynes with CO to provide a facile and atom-economic
method for synthesizing various tetrasubstituted p-benzoqui-
nones, some of which are not easily prepared by the tradi-
tional synthetic method.

Experimental Section

A representative procedure for the [242+1+1] cyclocarbonylative cou-
pling of 4-octyne (1a) with CO

Formation of 2,3,5,6-tetra-n-propyl-1,4-benzoquinone (2a): A mixture of
4-octyne (110.0 mg, 1.0 mmol) and [RhCI(CO),], (9.8 mg, 0.025 mmol) in
1,1,2,2-tetrachloroethane (1.0 mL) was bubbled with carbon monoxide
and nitrogen (CO/N,=ca. 1:1, ~1.5-2.0 mLmin"") with stirring at room
temperature for 5 min. The resulting yellow solution was then refluxed
with continued bubbling of the gas mixture (oil bath temperature was
140°C) for 20 h. After GC and GCMS analyses of the reaction mixture,
volatiles were removed under a reduced pressure and the residue was
subjected to silica-gel column chromatography (eluting with cyclohexane
and then with a diethyl ether/hexane mixture (3x5:100)) to afford 2a
(124.1 mg, 90%) as a yellow viscous oil. GC analyses of the reaction mix-
ture disclosed the formation of 2a in 94 % yield.
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